Department of Chemical Engineering

Programa Graduado Ing. Química - UPRM / Google Hangout on Air 10/oct/2014 10:30am AST

¡Saludos a todos y todas!

Les invitamos al evento "Presentación del Programa Graduado (Posgrado) de Ingeniería Química de la UPR Mayagüez" a trasmitirse por Google Hangout on Air el viernes, 10 de octubre de 2014 a las 10:30 am (AST - hora de Puerto Rico).  

Esperamos orientarte sobre las excelentes oportunidades que existen dentro de nuestro programa graduado y aceptes el reto del solicitar y ser parte de nuestra gran comunidad de investigadores e investigadoras. Durante la presentación, hablaremos sobre los temas de investigación, éxito de nuestros estudiantes graduados y profesores, vida académica y social en Puerto Rico, proceso de solicitud, ayudas económicas, entre otros. 
Para conectarte a nuestro evento favor de acceder a cualquiera de los siguientes enlaces a la hora de transmisión: 

En la página del evento en Google+, podrá hacer preguntas en el Q&A, antes, durante y después de la presentación.  Necesitará cuenta de o Gmail. 
Igualmente nos podrá seguir a través de nuestra cuenta en Twitter @InQuRUM y Facebook Utilizaremos el hashtag #INQUgrad para identificar la discusión. También podrá hacernos preguntas en estos medios sociales. 
La presentación tendrá una duración de 30 min aproximadamente  y será ofrecida  por el Dr. Ubaldo M. Córdova ( y el Dr. Jorge Almodóvar (, profesores de nuestro programa. 

¡Nuevamente, muchas gracias por tu interés! 

Programa Graduado - Google Hangout Live - 10 de octubre de 2014, 10:30 am (AST)

La presentación será transmitida en vivo el 10 de octubre de 2014, 10:30 am (AST) hora de Puerto Rico.

Para apreciar la presentación en "Full Screen" aprete sobre el logo de YouTube que aparce en el marco del video arriba.

ChE Seminar Series: In vitro modeling of the tumor microenvironment in multi-compartment microdevices for preclinical assays (Speaker: Dr. Maribella Domenech - UPRM)

Chemical Engineering Seminar Series

Title: In vitro modeling  of the tumor microenvironment in multi-compartment microdevices for  preclinical assays

Speaker: Dr Maribella Domenech - Department of Chemical Engineering, University of Puerto Rico - Mayagüez

When: November 13, 2014 10:30 am – 12:00 pm

Where: Abbott Room, Chemistry Building

Abstract: Crosstalk between different cell types through paracrine factors and extracellular matrix interactions are thought to be critical for the expansion of cancer cells within the tumor microenvironment.  Paracrine signaling among tumor and stromal cells has been shown to contribute to tumor growth and metastasis. Hedgehog signaling is one example of paracrine- induced tumor growth. Secreted Hedgehog ligands by tumor cells activate hedgehog target genes in the adjacent stroma promoting tumor growth. Despite the importance of the stroma and other non-tumor cells in cancer development and progression, current cell-culture technology is not well suited to the study of paracrine signaling among multiple cell types. Well-based platforms provide highly convective environments that can sweep soluble signals away from their target, disrupting paracrine signaling interactions. Transwell co-culture systems have long diffusion distances and require large numbers of cells thereby delaying paracrine signaling and limiting the study of tumor stroma interactions to cell lines respectively. Microfluidic devices can overcome some of these limitations by providing a controlled and defined culture environment where multiple cell types can interact in close proximity and volume to cell ratio is 1 order of magnitude lower than in well-based platforms. In this talk, we discuss the development of the first in vitro model of paracrine Hedgehog signaling in prostate cancer using a compartmentalized microfluidic platform. The evaluation of clinical drugs and nanomaterial therapeutics to access pre-clinical efficacy is discussed, as well as the potential application of similar in vitro models to other cancers such as triple negative breast cancer. 

Che Seminar Series: Liquid-phase catalytic conversion of lignocellulosic biomass to fuels and chemicals (Speaker: Dr James Dumesic - University of Wisconsin Madison)

Chemical Engineering Seminar Series

Title: Liquid-phase catalytic conversion of lignocellulosic biomass to fuels and chemicals

Speaker: Dr James Dumesic - Department of Chemical and Biological Engineering, University of Wisconsin Madison

When: December 4, 2014 10:30 am – 12:00 pm

Where: Abbott Room, Chemistry Building


Environmental and political issues created by our dependence on fossil fuels, such as global warming and national security, combined with diminishing petroleum resources are causing society to search for new renewable sources of energy and chemicals, and an important sustainable source of organic fuels, chemicals and materials is plant biomass.  We will show aqueous-phase processing can be carried out over bimetallic catalysts (e.g, RhRe, RhMo, PtMo) to achieve selective production of α,ω-diols from biomass-derived reactants.  We will show that the active sites on these bimetallic catalysts are bi-functional in nature, where the more reducible metal (Rh, Pt) catalyzes hydrogenation/dehydrogenation processes, and the more oxophilic metal (Re, Mo) provides sites that facilitate acid-catalyzed reactions.  We will then present strategies for the catalytic conversion of the C5 and C6 sugars present in hemi-cellulose and cellulose, respectively, to produce gamma-valerolactone (GVL). We will present a processing approach that uses GVL as a solvent to convert simultaneously the C5 and C6 sugars in biomass, thereby simplifying separation steps, because GVL is one of the reaction products. Additionally, GVL solubilizes the degradation products typically formed during biomass deconstruction, and this approach can thus be implemented using continuous flow reactors. We will demonstrate that we can produce soluble carbohydrates from corn stover, hardwood and softwood at high yields (80-90%) in a solvent consisting of biomass-derived GVL, water, and dilute acid (0.005 M). We will show that these carbohydrates can be recovered and concentrated (up to 130 g/L) in an aqueous phase by extraction of GVL using CO2. These yields and sugar concentrations are comparable to those obtained using multiple steps and/or high-cost chemicals or bio-catalysts, such as hydrolysis in concentrated mineral acids, pretreatment and enzymatic hydrolysis, or ionic liquid hydrolysis. We will then present results from reaction kinetics studies to quantify the effects of polar aprotic organic solvents on reaction rates and selectivities of acid-catalyzed reactions of relevance for biomass conversion (e.g., xylose dehydration to furfural). We will suggest that the aprotic organic solvent affects the stabilization of the acidic proton relative to the protonated transition states, leading to accelerated reaction rates for these acid-catalyzed biomass conversion reactions.

Hosted by Wi(PR)2EM